
So M can be calculated because all quantities on the right, including the radius of Earth r , are known from direct

measurements. We shall see in Satellites and Kepler's Laws: An Argument for Simplicity that knowing G also allows for the

determination of astronomical masses. Interestingly, of all the fundamental constants in physics, G is by far the least well
determined.

The Cavendish experiment is also used to explore other aspects of gravity. One of the most interesting questions is whether the
gravitational force depends on substance as well as mass—for example, whether one kilogram of lead exerts the same
gravitational pull as one kilogram of water. A Hungarian scientist named Roland von Eötvös pioneered this inquiry early in the
20th century. He found, with an accuracy of five parts per billion, that the gravitational force does not depend on the substance.
Such experiments continue today, and have improved upon Eötvös' measurements. Cavendish-type experiments such as those
of Eric Adelberger and others at the University of Washington, have also put severe limits on the possibility of a fifth force and
have verified a major prediction of general relativity—that gravitational energy contributes to rest mass. Ongoing measurements
there use a torsion balance and a parallel plate (not spheres, as Cavendish used) to examine how Newton's law of gravitation
works over sub-millimeter distances. On this small-scale, do gravitational effects depart from the inverse square law? So far, no
deviation has been observed.

Figure 6.28 Cavendish used an apparatus like this to measure the gravitational attraction between the two suspended spheres ( m ) and the two on

the stand ( M ) by observing the amount of torsion (twisting) created in the fiber. Distance between the masses can be varied to check the
dependence of the force on distance. Modern experiments of this type continue to explore gravity.

6.6 Satellites and Kepler's Laws: An Argument for Simplicity

Learning Objectives
By the end of this section, you will be able to:

• State Kepler's laws of planetary motion.
• Derive Kepler's third law for circular orbits.
• Discuss the Ptolemaic model of the universe.

Examples of gravitational orbits abound. Hundreds of artificial satellites orbit Earth together with thousands of pieces of debris.
The Moon's orbit about Earth has intrigued humans from time immemorial. The orbits of planets, asteroids, meteors, and comets
about the Sun are no less interesting. If we look further, we see almost unimaginable numbers of stars, galaxies, and other
celestial objects orbiting one another and interacting through gravity.

All these motions are governed by gravitational force, and it is possible to describe them to various degrees of precision. Precise
descriptions of complex systems must be made with large computers. However, we can describe an important class of orbits
without the use of computers, and we shall find it instructive to study them. These orbits have the following characteristics:

1. A small mass m orbits a much larger mass M . This allows us to view the motion as if M were stationary—in fact, as if

from an inertial frame of reference placed on M —without significant error. Mass m is the satellite of M , if the orbit is
gravitationally bound.

2. The system is isolated from other masses. This allows us to neglect any small effects due to outside masses.

The conditions are satisfied, to good approximation, by Earth's satellites (including the Moon), by objects orbiting the Sun, and by
the satellites of other planets. Historically, planets were studied first, and there is a classical set of three laws, called Kepler's
laws of planetary motion, that describe the orbits of all bodies satisfying the two previous conditions (not just planets in our solar
system). These descriptive laws are named for the German astronomer Johannes Kepler (1571–1630), who devised them after
careful study (over some 20 years) of a large amount of meticulously recorded observations of planetary motion done by Tycho
Brahe (1546–1601). Such careful collection and detailed recording of methods and data are hallmarks of good science. Data
constitute the evidence from which new interpretations and meanings can be constructed.
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Kepler's Laws of Planetary Motion
Kepler's First Law

The orbit of each planet about the Sun is an ellipse with the Sun at one focus.

Figure 6.29 (a) An ellipse is a closed curve such that the sum of the distances from a point on the curve to the two foci ( f1 and f2 ) is a constant.

You can draw an ellipse as shown by putting a pin at each focus, and then placing a string around a pencil and the pins and tracing a line on paper. A
circle is a special case of an ellipse in which the two foci coincide (thus any point on the circle is the same distance from the center). (b) For any closed
gravitational orbit, m follows an elliptical path with M at one focus. Kepler's first law states this fact for planets orbiting the Sun.

Kepler's Second Law

Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas in equal times (see
Figure 6.30).

Kepler's Third Law

The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the cubes of their average
distances from the Sun. In equation form, this is

(6.55)T1
 2

T2
 2 =

r1
 3

r2
 3,

where T is the period (time for one orbit) and r is the average radius. This equation is valid only for comparing two small
masses orbiting the same large one. Most importantly, this is a descriptive equation only, giving no information as to the cause of
the equality.
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Figure 6.30 The shaded regions have equal areas. It takes equal times for m to go from A to B, from C to D, and from E to F. The mass m moves

fastest when it is closest to M . Kepler's second law was originally devised for planets orbiting the Sun, but it has broader validity.

Note again that while, for historical reasons, Kepler's laws are stated for planets orbiting the Sun, they are actually valid for all
bodies satisfying the two previously stated conditions.

Example 6.7 Find the Time for One Orbit of an Earth Satellite

Given that the Moon orbits Earth each 27.3 d and that it is an average distance of 3.84×108 m from the center of Earth,
calculate the period of an artificial satellite orbiting at an average altitude of 1500 km above Earth's surface.

Strategy

The period, or time for one orbit, is related to the radius of the orbit by Kepler's third law, given in mathematical form in

T1
 2

T2
 2 =

r1
 3

r2
 3 . Let us use the subscript 1 for the Moon and the subscript 2 for the satellite. We are asked to find T2 . The

given information tells us that the orbital radius of the Moon is r1 = 3.84×108 m , and that the period of the Moon is

T1 = 27.3 d . The height of the artificial satellite above Earth's surface is given, and so we must add the radius of Earth

(6380 km) to get r2 = (1500 + 6380) km = 7880 km . Now all quantities are known, and so T2 can be found.

Solution

Kepler's third law is

(6.56)T1
 2

T2
 2 =

r1
 3

r2
 3.

To solve for T2 , we cross-multiply and take the square root, yielding

(6.57)
T2

 2 = T1
 2 ⎛

⎝
r2
r1

⎞
⎠

3

(6.58)
T2 = T1

⎛
⎝
r2
r1

⎞
⎠

3 / 2
.

Substituting known values yields

(6.59)

T2 = 27.3 d×24.0 h
d ×⎛

⎝
7880 km

3.84×105 km
⎞
⎠

3 / 2

= 1.93 h.
Discussion This is a reasonable period for a satellite in a fairly low orbit. It is interesting that any satellite at this altitude will
orbit in the same amount of time. This fact is related to the condition that the satellite's mass is small compared with that of
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Earth.

People immediately search for deeper meaning when broadly applicable laws, like Kepler's, are discovered. It was Newton who
took the next giant step when he proposed the law of universal gravitation. While Kepler was able to discover what was
happening, Newton discovered that gravitational force was the cause.

Derivation of Kepler's Third Law for Circular Orbits
We shall derive Kepler's third law, starting with Newton's laws of motion and his universal law of gravitation. The point is to
demonstrate that the force of gravity is the cause for Kepler's laws (although we will only derive the third one).

Let us consider a circular orbit of a small mass m around a large mass M , satisfying the two conditions stated at the beginning
of this section. Gravity supplies the centripetal force to mass m . Starting with Newton's second law applied to circular motion,

(6.60)
Fnet = mac = mv2

r .

The net external force on mass m is gravity, and so we substitute the force of gravity for Fnet :

(6.61)
GmM

r2 = mv2
r .

The mass m cancels, yielding

(6.62)GM
r = v2.

The fact that m cancels out is another aspect of the oft-noted fact that at a given location all masses fall with the same
acceleration. Here we see that at a given orbital radius r , all masses orbit at the same speed. (This was implied by the result of

the preceding worked example.) Now, to get at Kepler's third law, we must get the period T into the equation. By definition,

period T is the time for one complete orbit. Now the average speed v is the circumference divided by the period—that is,

(6.63)v = 2πr
T .

Substituting this into the previous equation gives

(6.64)
GM

r = 4π2 r2

T 2 .

Solving for T 2 yields

(6.65)
T 2 = 4π2

GMr3.

Using subscripts 1 and 2 to denote two different satellites, and taking the ratio of the last equation for satellite 1 to satellite 2
yields

(6.66)T1
 2

T2
 2 =

r1
 3

r2
 3.

This is Kepler's third law. Note that Kepler's third law is valid only for comparing satellites of the same parent body, because only
then does the mass of the parent body M cancel.

Now consider what we get if we solve T 2 = 4π2

GMr3 for the ratio r3 / T 2 . We obtain a relationship that can be used to

determine the mass M of a parent body from the orbits of its satellites:

(6.67)r3

T 2 = G
4π2M.

If r and T are known for a satellite, then the mass M of the parent can be calculated. This principle has been used

extensively to find the masses of heavenly bodies that have satellites. Furthermore, the ratio r3 / T 2 should be a constant for all

satellites of the same parent body (because r3 / T 2 = GM / 4π2 ). (See Table 6.2).

It is clear from Table 6.2 that the ratio of r3 / T 2 is constant, at least to the third digit, for all listed satellites of the Sun, and for

those of Jupiter. Small variations in that ratio have two causes—uncertainties in the r and T data, and perturbations of the

250 Chapter 6 | Gravitation and Uniform Circular Motion

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14



orbits due to other bodies. Interestingly, those perturbations can be—and have been—used to predict the location of new planets
and moons. This is another verification of Newton's universal law of gravitation.

Making Connections: General Relativity and Mercury

Newton's universal law of gravitation is modified by Einstein's general theory of relativity, as we shall see in Particle
Physics. Newton's gravity is not seriously in error—it was and still is an extremely good approximation for most situations.
Einstein's modification is most noticeable in extremely large gravitational fields, such as near black holes. However, general
relativity also explains such phenomena as small but long-known deviations of the orbit of the planet Mercury from classical
predictions.

The Case for Simplicity
The development of the universal law of gravitation by Newton played a pivotal role in the history of ideas. While it is beyond the
scope of this text to cover that history in any detail, we note some important points. The definition of planet set in 2006 by the
International Astronomical Union (IAU) states that in the solar system, a planet is a celestial body that:

1. is in orbit around the Sun,

2. has sufficient mass to assume hydrostatic equilibrium and

3. has cleared the neighborhood around its orbit.

A non-satellite body fulfilling only the first two of the above criteria is classified as “dwarf planet.”

In 2006, Pluto was demoted to a ‘dwarf planet' after scientists revised their definition of what constitutes a “true” planet.

Table 6.2 Orbital Data and Kepler's Third Law

Parent Satellite Average orbital radius r(km) Period T(y) r3 / T2 (km3 / y2)

Earth Moon 3.84×105 0.07481 1.01×1019

Sun Mercury 5.79×107 0.2409 3.34×1024

Venus 1.082×108 0.6150 3.35×1024

Earth 1.496×108 1.000 3.35×1024

Mars 2.279×108 1.881 3.35×1024

Jupiter 7.783×108 11.86 3.35×1024

Saturn 1.427×109 29.46 3.35×1024

Neptune 4.497×109 164.8 3.35×1024

Pluto 5.90×109 248.3 3.33×1024

Jupiter Io 4.22×105 0.00485 (1.77 d) 3.19×1021

Europa 6.71×105 0.00972 (3.55 d) 3.20×1021

Ganymede 1.07×106 0.0196 (7.16 d) 3.19×1021

Callisto 1.88×106 0.0457 (16.19 d) 3.20×1021

The universal law of gravitation is a good example of a physical principle that is very broadly applicable. That single equation for
the gravitational force describes all situations in which gravity acts. It gives a cause for a vast number of effects, such as the
orbits of the planets and moons in the solar system. It epitomizes the underlying unity and simplicity of physics.

Before the discoveries of Kepler, Copernicus, Galileo, Newton, and others, the solar system was thought to revolve around Earth
as shown in Figure 6.31(a). This is called the Ptolemaic view, for the Greek philosopher who lived in the second century AD.
This model is characterized by a list of facts for the motions of planets with no cause and effect explanation. There tended to be
a different rule for each heavenly body and a general lack of simplicity.

Figure 6.31(b) represents the modern or Copernican model. In this model, a small set of rules and a single underlying force
explain not only all motions in the solar system, but all other situations involving gravity. The breadth and simplicity of the laws of
physics are compelling. As our knowledge of nature has grown, the basic simplicity of its laws has become ever more evident.
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angular velocity:

arc length:

banked curve:

center of mass:

centrifugal force:

centripetal acceleration:

centripetal force:

Coriolis force:

fictitious force:

gravitational constant, G:

ideal angle:

ideal banking:

ideal speed:

microgravity:

Newton's universal law of gravitation:

non-inertial frame of reference:

pit:

radians:

Figure 6.31 (a) The Ptolemaic model of the universe has Earth at the center with the Moon, the planets, the Sun, and the stars revolving about it in
complex superpositions of circular paths. This geocentric model, which can be made progressively more accurate by adding more circles, is purely
descriptive, containing no hints as to what are the causes of these motions. (b) The Copernican model has the Sun at the center of the solar system. It
is fully explained by a small number of laws of physics, including Newton's universal law of gravitation.

Glossary
ω , the rate of change of the angle with which an object moves on a circular path

Δs , the distance traveled by an object along a circular path

the curve in a road that is sloping in a manner that helps a vehicle negotiate the curve

the point where the entire mass of an object can be thought to be concentrated

a fictitious force that tends to throw an object off when the object is rotating in a non-inertial frame of
reference

the acceleration of an object moving in a circle, directed toward the center

any net force causing uniform circular motion

the fictitious force causing the apparent deflection of moving objects when viewed in a rotating frame of
reference

a force having no physical origin

a proportionality factor used in the equation for Newton's universal law of gravitation; it is a
universal constant—that is, it is thought to be the same everywhere in the universe

the angle at which a car can turn safely on a steep curve, which is in proportion to the ideal speed

the sloping of a curve in a road, where the angle of the slope allows the vehicle to negotiate the curve at a
certain speed without the aid of friction between the tires and the road; the net external force on the vehicle equals the
horizontal centripetal force in the absence of friction

the maximum safe speed at which a vehicle can turn on a curve without the aid of friction between the tire and
the road

an environment in which the apparent net acceleration of a body is small compared with that produced by Earth
at its surface

every particle in the universe attracts every other particle with a force along a line
joining them; the force is directly proportional to the product of their masses and inversely proportional to the square of
the distance between them

an accelerated frame of reference

a tiny indentation on the spiral track moulded into the top of the polycarbonate layer of CD

a unit of angle measurement
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