CHAPTER 1

What is Physics?

Figure 1.1 Galaxies, such as the Andromeda galaxy pictured here, are immense in size. The small blue spots in this
photo are also galaxies. The same physical laws apply to objects as large as galaxies or objects as small as atoms.
The laws of physics are, therefore, surprisingly few in number. (NASA, JPL-Caltech, P. Barmby, Harvard-Smithsonian
Center for Astrophysics).
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INTRODUCTION Take a look at the image above of the Andromeda Galaxy (Figure 1.1), which contains billions of stars. This
galaxy is the nearest one to our own galaxy (the Milky Way) but is still a staggering 2.5 million light years from Earth. (A light
year is a measurement of the distance light travels in a year.) Yet, the primary force that affects the movement of stars within
Andromeda is the same force that we contend with here on Earth—namely, gravity.

You may soon realize that physics plays a much larger role in your life than you thought. This section introduces you to the realm
of physics, and discusses applications of physics in other disciplines of study. It also describes the methods by which science is
done, and how scientists communicate their results to each other.

1.1 Physics: Definitions and Applications

Section Learning Objectives

By the end of this section, you will be able to do the following:

e Describe the definition, aims, and branches of physics

e Describe and distinguish classical physics from modern physics and describe the importance of relativity,
quantum mechanics, and relativistic quantum mechanics in modern physics

e Describe how aspects of physics are used in other sciences (e.g., biology, chemistry, geology, etc.) as well as in
everyday technology



Section Key Terms
atom classical physics modern physics

physics quantum mechanics theory of relativity

What Physics Is

Think about all of the technological devices that you use on a regular basis. Computers, wireless internet, smart phones, tablets,
global positioning system (GPS), MP3 players, and satellite radio might come to mind. Next, think about the most exciting
modern technologies that you have heard about in the news, such as trains that levitate above their tracks, invisibility cloaks that
bend light around them, and microscopic robots that fight diseased cells in our bodies. All of these groundbreaking
advancements rely on the principles of physics.

Physics is a branch of science. The word science comes from a Latin word that means having knowledge, and refers the
knowledge of how the physical world operates, based on objective evidence determined through observation and
experimentation. A key requirement of any scientific explanation of a natural phenomenon is that it must be testable; one must
be able to devise and conduct an experimental investigation that either supports or refutes the explanation. It is important to
note that some questions fall outside the realm of science precisely because they deal with phenomena that are not scientifically
testable. This need for objective evidence helps define the investigative process scientists follow, which will be described later in
this chapter.

Physics is the science aimed at describing the fundamental aspects of our universe. This includes what things are in it, what
properties of those things are noticeable, and what processes those things or their properties undergo. In simpler terms, physics
attempts to describe the basic mechanisms that make our universe behave the way it does. For example, consider a smart phone
(Figure 1.2). Physics describes how electric current interacts with the various circuits inside the device. This knowledge helps
engineers select the appropriate materials and circuit layout when building the smart phone. Next, consider a GPS. Physics
describes the relationship between the speed of an object, the distance over which it travels, and the time it takes to travel that
distance. When you use a GPS device in a vehicle, it utilizes these physics relationships to determine the travel time from one
location to another.



Figure 1.2 Physics describes the way that electric charge flows through the circuits of this device. Engineers use their knowledge of physics
to construct a smartphone with features that consumers will enjoy, such as a GPS function. GPS uses physics equations to determine the

driving time between two locations on a map. (@gletham GIS, Social, Mobile Tech Images)

As our technology evolved over the centuries, physics expanded into many branches. Ancient peoples could only study things
that they could see with the naked eye or otherwise experience without the aid of scientific equipment. This included the study
of kinematics, which is the study of moving objects. For example, ancient people often studied the apparent motion of objects in
the sky, such as the sun, moon, and stars. This is evident in the construction of prehistoric astronomical observatories, such as
Stonehenge in England (shown in Figure 1.3).

Figure 1.3 Stonehenge is a monument located in England that was built between 3000 and 1000 B.C. It functions as an ancient
astronomical observatory, with certain rocks in the monument aligning with the position of the sun during the summer and winter solstices.

Other rocks align with the rising and setting of the moon during certain days of the year. (Citypeek, Wikimedia Commons)

Ancient people also studied statics and dynamics, which focus on how objects start moving, stop moving, and change speed and
direction in response to forces that push or pull on the objects. This early interest in kinematics and dynamics allowed humans
to invent simple machines, such as the lever, the pulley, the ramp, and the wheel. These simple machines were gradually



combined and integrated to produce more complicated machines, such as wagons and cranes. Machines allowed humans to
gradually do more work more effectively in less time, allowing them to create larger and more complicated buildings and
structures, many of which still exist today from ancient times.

As technology advanced, the branches of physics diversified even more. These include branches such as acoustics, the study of
sound, and optics, the study of the light. In 1608, the invention of the telescope by a Germany spectacle maker, Hans Lippershey,
led to huge breakthroughs in astronomy—the study of objects or phenomena in space. One year later, in 1609, Galileo Galilei
began the first studies of the solar system and the universe using a telescope. During the Renaissance era, Isaac Newton used
observations made by Galileo to construct his three laws of motion. These laws were the standard for studying kinematics and
dynamics even today.

Another major branch of physics is thermodynamics, which includes the study of thermal energy and the transfer of heat. James
Prescott Joule, an English physicist, studied the nature of heat and its relationship to work. Joule’s work helped lay the
foundation for the first of three laws of thermodynamics that describe how energy in our universe is transferred from one object
to another or transformed from one form to another. Studies in thermodynamics were motivated by the need to make engines
more efficient, keep people safe from the elements, and preserve food.

The 18™ and 19" centuries also saw great strides in the study of electricity and magnetism. Electricity involves the study of
electric charges and their movements. Magnetism had long ago been noticed as an attractive force between a magnetized object
and a metal like iron, or between the opposite poles (North and South) of two magnetized objects. In 1820, Danish physicist
Hans Christian Oersted showed that electric currents create magnetic fields. In 1831, English inventor Michael Faraday showed
that moving a wire through a magnetic field could induce an electric current. These studies led to the inventions of the electric
motor and electric generator, which revolutionized human life by bringing electricity and magnetism into our machines.

The end of the 19 century saw the discovery of radioactive substances by the French scientists Marie and Pierre Curie. Nuclear
physics involves studying the nuclei of atoms, the source of nuclear radiation. In the 20 century, the study of nuclear physics
eventually led to the ability to split the nucleus of an atom, a process called nuclear fission. This process is the basis for nuclear
power plants and nuclear weapons. Also, the field of quantum mechanics, which involves the mechanics of atoms and
molecules, saw great strides during the 20™ century as our understanding of atoms and subatomic particles increased (see
below).

Early in the 20 century, Albert Einstein revolutionized several branches of physics, especially relativity. Relativity
revolutionized our understanding of motion and the universe in general as described further in this chapter. Now, in the 21%
century, physicists continue to study these and many other branches of physics.

By studying the most important topics in physics, you will gain analytical abilities that will enable you to apply physics far
beyond the scope of what can be included in a single book. These analytical skills will help you to excel academically, and they will
also help you to think critically in any career you choose to pursue.

Physics: Past and Present

The word physics is thought to come from the Greek word phusis, meaning nature. The study of nature later came to be called
natural philosophy. From ancient times through the Renaissance, natural philosophy encompassed many fields, including
astronomy, biology, chemistry, mathematics, and medicine. Over the last few centuries, the growth of scientific knowledge has
resulted in ever-increasing specialization and branching of natural philosophy into separate fields, with physics retaining the
most basic facets. Physics, as it developed from the Renaissance to the end of the 19" century, is called classical physics.
Revolutionary discoveries starting at the beginning of the 20 century transformed physics from classical physics to modern
physics.

Classical physics is not an exact description of the universe, but it is an excellent approximation under the following conditions:
(1) matter must be moving at speeds less than about 1 percent of the speed of light, (2) the objects dealt with must be large
enough to be seen with the naked eye, and (3) only weak gravity, such as that generated by Earth, can be involved. Very small
objects, such as atoms and molecules, cannot be adequately explained by classical physics. These three conditions apply to
almost all of everyday experience. As a result, most aspects of classical physics should make sense on an intuitive level.

Many laws of classical physics have been modified during the 20™ century, resulting in revolutionary changes in technology,
society, and our view of the universe. As a result, many aspects of modern physics, which occur outside of the range of our
everyday experience, may seem bizarre or unbelievable. So why is most of this textbook devoted to classical physics? There are



two main reasons. The first is that knowledge of classical physics is necessary to understand modern physics. The second reason
is that classical physics still gives an accurate description of the universe under a wide range of everyday circumstances.

Modern physics includes two revolutionary theories: relativity and quantum mechanics. These theories deal with the very fast
and the very small, respectively. The theory of relativity was developed by Albert Einstein in 1905. By examining how two
observers moving relative to each other would see the same phenomena, Einstein devised radical new ideas about time and
space. He came to the startling conclusion that the measured length of an object travelling at high speeds (greater than about
one percent of the speed of light) is shorter than the same object measured at rest. Perhaps even more bizarre is the idea the
time for the same process to occur is different depending on the motion of the observer. Time passes more slowly for an object
travelling at high speeds. A trip to the nearest star system, Alpha Centauri, might take an astronaut 4.5 Earth years if the ship
travels near the speed of light. However, because time is slowed at higher speeds, the astronaut would age only 0.5 years during
the trip. Einstein’s ideas of relativity were accepted after they were confirmed by numerous experiments.

Gravity, the force that holds us to Earth, can also affect time and space. For example, time passes more slowly on Earth’s surface
than for objects farther from the surface, such as a satellite in orbit. The very accurate clocks on global positioning satellites have
to correct for this. They slowly keep getting ahead of clocks at Earth’s surface. This is called time dilation, and it occurs because
gravity, in essence, slows down time.

Large objects, like Earth, have strong enough gravity to distort space. To visualize this idea, think about a bowling ball placed on
a trampoline. The bowling ball depresses or curves the surface of the trampoline. If you rolled a marble across the trampoline, it
would follow the surface of the trampoline, roll into the depression caused by the bowling ball, and hit the ball. Similarly, the
Earth curves space around it in the shape of a funnel. These curves in space due to the Earth cause objects to be attracted to
Earth (i.e., gravity).

Because of the way gravity affects space and time, Einstein stated that gravity affects the space-time continuum, as illustrated in
Figure 1.4. This is why time proceeds more slowly at Earth’s surface than in orbit. In black holes, whose gravity is hundreds of
times that of Earth, time passes so slowly that it would appear to a far-away observer to have stopped!

Figure 1.4 Einstein’s theory of relativity describes space and time as an interweaved mesh. Large objects, such as a planet, distort space,
causing objects to fall in toward the planet due to the action of gravity. Large objects also distort time, causing time to proceed at a slower

rate near the surface of Earth compared with the area outside of the distorted region of space-time.

In summary, relativity says that in describing the universe, it is important to realize that time, space and speed are not absolute.
Instead, they can appear different to different observers. Einstein's ability to reason out relativity is even more amazing because
we cannot see the effects of relativity in our everyday lives.

Quantum mechanics is the second major theory of modern physics. Quantum mechanics deals with the very small, namely, the
subatomic particles that make up atoms. Atoms (Figure 1.5) are the smallest units of elements. However, atoms themselves are
constructed of even smaller subatomic particles, such as protons, neutrons and electrons. Quantum mechanics strives to



describe the properties and behavior of these and other subatomic particles. Often, these particles do not behave in the ways
expected by classical physics. One reason for this is that they are small enough to travel at great speeds, near the speed of light.

Figure 1.5 Using a scanning tunneling microscope (STM), scientists can see the individual atoms that compose this sheet of gold.

(Erwinrossen)

At particle colliders (Figure 1.6), such as the Large Hadron Collider on the France-Swiss border, particle physicists can make
subatomic particles travel at very high speeds within a 27 kilometers (17 miles) long superconducting tunnel. They can then study
the properties of the particles at high speeds, as well as collide them with each other to see how they exchange energy. This has
led to many intriguing discoveries such as the Higgs-Boson particle, which gives matter the property of mass, and antimatter,
which causes a huge energy release when it comes in contact with matter.

Figure 1.6 Particle colliders such as the Large Hadron Collider in Switzerland or Fermilab in the United States (pictured here), have long

tunnels that allows subatomic particles to be accelerated to near light speed. (Andrius.v)

Physicists are currently trying to unify the two theories of modern physics, relativity and quantum mechanics, into a single,
comprehensive theory called relativistic quantum mechanics. Relating the behavior of subatomic particles to gravity, time, and
space will allow us to explain how the universe works in a much more comprehensive way.

Application of Physics

You need not be a scientist to use physics. On the contrary, knowledge of physics is useful in everyday situations as well as in
nonscientific professions. For example, physics can help you understand why you shouldn't put metal in the microwave (Figure
1.7), why a black car radiator helps remove heat in a car engine, and why a white roof helps keep the inside of a house cool. The
operation of a car’s ignition system, as well as the transmission of electrical signals through our nervous system, are much

easier to understand when you think about them in terms of the basic physics of electricity.

Figure 1.7 Why can't you put metal in the microwave? Microwaves are high-energy radiation that increases the movement of electrons in



metal. These moving electrons can create an electrical current, causing sparking that can lead to a fire. (= MoneyBlogNewz)

Physics is the foundation of many important scientific disciplines. For example, chemistry deals with the interactions of atoms
and molecules. Not surprisingly, chemistry is rooted in atomic and molecular physics. Most branches of engineering are also
applied physics. In architecture, physics is at the heart of determining structural stability, acoustics, heating, lighting, and
cooling for buildings. Parts of geology, the study of nonliving parts of Earth, rely heavily on physics; including radioactive
dating, earthquake analysis, and heat transfer across Earth's surface. Indeed, some disciplines, such as biophysics and
geophysics, are hybrids of physics and other disciplines.

Physics also describes the chemical processes that power the human body. Physics is involved in medical diagnostics, such as x-
rays, magnetic resonance imaging (MRI), and ultrasonic blood flow measurements (Figure 1.8). Medical therapy Physics also has
many applications in biology, the study of life. For example, physics describes how cells can protect themselves using their cell
walls and cell membranes (Figure 1.9). Medical therapy sometimes directly involves physics, such as in using X-rays to diagnose
health conditions. Physics can also explain what we perceive with our senses, such as how the ears detect sound or the eye
detects color.

Figure 1.8 Magnetic resonance imaging (MRI) uses electromagnetic waves to yield an image of the brain, which doctors can use to find

diseased regions. (Rashmi Chawla, Daniel Smith, and Paul E. Marik)

Figure 1.9 Physics, chemistry, and biology help describe the properties of cell walls in plant cells, such as the onion cells seen here.

(Umberto Salvagnin)

BOUNDLESS PHYSICS

The Physics of Landing on a Comet

On November 12, 2014, the European Space Agency’s Rosetta spacecraft (shown in Figure 1.10) became the first ever to reach and
orbit a comet. Shortly after, Rosetta’s rover, Philae, landed on the comet, representing the first time humans have ever landed a
space probe on a comet.



Figure 1.10 The Rosetta spacecraft, with its large and revolutionary solar panels, carried the Philae lander to a comet. The lander then

detached and landed on the comet’s surface. (European Space Agency)

After traveling 6.4 billion kilometers starting from its launch on Earth, Rosetta landed on the comet 67P/Churyumov-
Gerasimenko, which is only 4 kilometers wide. Physics was needed to successfully plot the course to reach such a small, distant,
and rapidly moving target. Rosetta’s path to the comet was not straight forward. The probe first had to travel to Mars so that
Mars’s gravity could accelerate it and divert it in the exact direction of the comet.

This was not the first time humans used gravity to power our spaceships. Voyager 2, a space probe launched in 1977, used the
gravity of Saturn to slingshot over to Uranus and Neptune (illustrated in Figure 1.11), providing the first pictures ever taken of
these planets. Now, almost 40 years after its launch, Voyager 2 is at the very edge of our solar system and is about to enter
interstellar space. Its sister ship, Voyager 1 (illustrated in Figure 1.11), which was also launched in 1977, is already there.

To listen to the sounds of interstellar space or see images that have been transmitted back from the Voyager I or to learn more
about the Voyager mission, visit the Voyager’s Mission website (https://openstax.org/l/28voyager) .

Figure 1.11 a) Voyager 2, launched in 1977, used the gravity of Saturn to slingshot over to Uranus and Neptune. NASA b) A rendering of

Voyager 1, the first space probe to ever leave our solar system and enter interstellar space. NASA

Both Voyagers have electrical power generators based on the decay of radioisotopes. These generators have served them for
almost 40 years. Rosetta, on the other hand, is solar-powered. In fact, Rosetta became the first space probe to travel beyond the
asteroid belt by relying only on solar cells for power generation.

At 800 million kilometers from the sun, Rosetta receives sunlight that is only 4 percent as strong as on Earth. In addition, it is
very cold in space. Therefore, a lot of physics went into developing Rosetta’s low-intensity low-temperature solar cells.

In this sense, the Rosetta project nicely shows the huge range of topics encompassed by physics: from modeling the movement
of gigantic planets over huge distances within our solar systems, to learning how to generate electric power from low-intensity
light. Physics is, by far, the broadest field of science.

GRASP CHECK
What characteristics of the solar system would have to be known or calculated in order to send a probe to a distant planet,
such as Jupiter?


https://openstax.org/l/28voyager

the effects due to the light from the distant stars
the effects due to the air in the solar system
the effects due to the gravity from the other planets

o o

the effects due to the cosmic microwave background radiation

In summary, physics studies many of the most basic aspects of science. A knowledge of physics is, therefore, necessary to
understand all other sciences. This is because physics explains the most basic ways in which our universe works. However, it is
not necessary to formally study all applications of physics. A knowledge of the basic laws of physics will be most useful to you, so
that you can use them to solve some everyday problems. In this way, the study of physics can improve your problem-solving
skills.

Check Your Understanding

1. Which of the following is not an essential feature of scientific explanations?
a. They must be subject to testing.
b. They strictly pertain to the physical world.
c. Their validity is judged based on objective observations.
d. Once supported by observation, they can be viewed as a fact.

2. Which of the following does not represent a question that can be answered by science?
a. How much energy is released in a given nuclear chain reaction?
b. Cananuclear chain reaction be controlled?
c.  Should uncontrolled nuclear reactions be used for military applications?
d. What s the half-life of a waste product of a nuclear reaction?

3. What are the three conditions under which classical physics provides an excellent description of our universe?
a. 1. Matter is moving at speeds less than about 1 percent of the speed of light
2. Objects dealt with must be large enough to be seen with the naked eye.
3. Strong electromagnetic fields are involved.

b. 1. Matter is moving at speeds less than about 1 percent of the speed of light.
2. Objects dealt with must be large enough to be seen with the naked eye.
3. Only weak gravitational fields are involved.

c. 1. Matter is moving at great speeds, comparable to the speed of light.
2. Objects dealt with are large enough to be seen with the naked eye.
3. Strong gravitational fields are involved.

d. 1. Matter is moving at great speeds, comparable to the speed of light.
2. Objects are just large enough to be visible through the most powerful telescope.
Only weak gravitational fields are involved.

4. Why is the Greek word for nature appropriate in describing the field of physics?
a. Physics is a natural science that studies life and living organism on habitable planets like Earth.
b. Physics is a natural science that studies the laws and principles of our universe.
c. Physics is a physical science that studies the composition, structure, and changes of matter in our universe.
d. Physics is a social science that studies the social behavior of living beings on habitable planets like Earth.

5. Which aspect of the universe is studied by quantum mechanics?
a. objects at the galactic level

b.
c. objects at the subatomic level
d

j
objects at the classical level
j
objects at all levels, from subatomic to galactic



1.2 The Scientific Methods

Section Learning Objectives

By the end of this section, you will be able to do the following:

e Explain how the methods of science are used to make scientific discoveries

e Define a scientific model and describe examples of physical and mathematical models used in physics
e Compare and contrast hypothesis, theory, and law

Section Key Terms
experiment hypothesis model observation principle

scientific law scientific methods theory universal

Scientific Methods

Scientists often plan and carry out investigations to answer questions about the universe around us. Such laws are intrinsic to
the universe, meaning that humans did not create them and cannot change them. We can only discover and understand them.
Their discovery is a very human endeavor, with all the elements of mystery, imagination, struggle, triumph, and disappointment
inherent in any creative effort. The cornerstone of discovering natural laws is observation. Science must describe the universe as
itis, not as we imagine or wish it to be.

We all are curious to some extent. We look around, make generalizations, and try to understand what we see. For example, we
look up and wonder whether one type of cloud signals an oncoming storm. As we become serious about exploring nature, we
become more organized and formal in collecting and analyzing data. We attempt greater precision, perform controlled
experiments (if we can), and write down ideas about how data may be organized. We then formulate models, theories, and laws
based on the data we have collected, and communicate those results with others. This, in a nutshell, describes the scientific
method that scientists employ to decide scientific issues on the basis of evidence from observation and experiment.

An investigation often begins with a scientist making an observation. The scientist observes a pattern or trend within the
natural world. Observation may generate questions that the scientist wishes to answer. Next, the scientist may perform some
research about the topic and devise a hypothesis. A hypothesis is a testable statement that describes how something in the
natural world works. In essence, a hypothesis is an educated guess that explains something about an observation.

Scientists may test the hypothesis by performing an experiment. During an experiment, the scientist collects data that will help
them learn about the phenomenon they are studying. Then the scientists analyze the results of the experiment (that is, the data),
often using statistical, mathematical, and/or graphical methods. From the data analysis, they draw conclusions. They may
conclude that their experiment either supports or rejects their hypothesis. If the hypothesis is supported, the scientist usually
goes on to test another hypothesis related to the first. If their hypothesis is rejected, they will often then test a new and different
hypothesis in their effort to learn more about whatever they are studying.

Scientific processes can be applied to many situations. Let’s say that you try to turn on your car, but it will not start. You have
just made an observation! You ask yourself, "Why wor't my car start?" You can now use scientific processes to answer this
question. First, you generate a hypothesis such as, "The car won't start because it has no gasoline in the gas tank." To test this
hypothesis, you put gasoline in the car and try to start it again. If the car starts, then your hypothesis is supported by the
experiment. If the car does not start, then your hypothesis is rejected. You will then need to think up a new hypothesis to test
such as, "My car wor't start because the fuel pump is broken."” Hopefully, your investigations lead you to discover why the car
won't start and enable you to fix it.

Modeling

A model is a representation of something that is often too difficult (or impossible) to study directly. Models can take the form of
physical models, equations, computer programs, or simulations—computer graphics/animations. Models are tools that are
especially useful in modern physics because they let us visualize phenomena that we normally cannot observe with our senses,
such as very small objects or objects that move at high speeds. For example, we can understand the structure of an atom using
models, despite the fact that no one has ever seen an atom with their own eyes. Models are always approximate, so they are
simpler to consider than the real situation; the more complete a model is, the more complicated it must be. Models put the



intangible or the extremely complex into human terms that we can visualize, discuss, and hypothesize about.

Scientific models are constructed based on the results of previous experiments. Even still, models often only describe a
phenomenon partially or in a few limited situations. Some phenomena are so complex that they may be impossible to model
them in their entirety, even using computers. An example is the electron cloud model of the atom in which electrons are moving
around the atonr’s center in distinct clouds (Figure 1.12), that represent the likelihood of finding an electron in different places.
This model helps us to visualize the structure of an atom. However, it does not show us exactly where an electron will be within
its cloud at any one particular time.

Figure 1.12 The electron cloud model of the atom predicts the geometry and shape of areas where different electrons may be found in an

atom. However, it cannot indicate exactly where an electron will be at any one time.

As mentioned previously, physicists use a variety of models including equations, physical models, computer simulations, etc.
For example, three-dimensional models are often commonly used in chemistry and physics to model molecules. Properties
other than appearance or location are usually modelled using mathematics, where functions are used to show how these
properties relate to one another. Processes such as the formation of a star or the planets, can also be modelled using computer
simulations. Once a simulation is correctly programmed based on actual experimental data, the simulation can allow us to view
processes that happened in the past or happen too quickly or slowly for us to observe directly. In addition, scientists can also run
virtual experiments using computer-based models. In a model of planet formation, for example, the scientist could alter the
amount or type of rocks present in space and see how it affects planet formation.

Scientists use models and experimental results to construct explanations of observations or design solutions to problems. For
example, one way to make a car more fuel efficient is to reduce the friction or drag caused by air flowing around the moving car.
This can be done by designing the body shape of the car to be more aerodynamic, such as by using rounded corners instead of
sharp ones. Engineers can then construct physical models of the car body, place them in a wind tunnel, and examine the flow of
air around the model. This can also be done mathematically in a computer simulation. The air flow pattern can be analyzed for
regions smooth air flow and for eddies that indicate drag. The model of the car body may have to be altered slightly to produce
the smoothest pattern of air flow (i.e., the least drag). The pattern with the least drag may be the solution to increasing fuel
efficiency of the car. This solution might then be incorporated into the car design.

Snap Lab

Using Models and the Scientific Processes
Be sure to secure loose items before opening the window or door.

In this activity, you will learn about scientific models by making a model of how air flows through your classroom or a room
in your house.

« One room with at least one window or door that can be opened
« DPiece of single-ply tissue paper
1. Work with a group of four, as directed by your teacher. Close all of the windows and doors in the room you are
working in. Your teacher may assign you a specific window or door to study.




2. Before opening any windows or doors, draw a to-scale diagram of your room. First, measure the length and width
of your room using the tape measure. Then, transform the measurement using a scale that could fit on your paper,
such as 5 centimeters = 1 meter.

3. Your teacher will assign you a specific window or door to study air flow. On your diagram, add arrows showing
your hypothesis (before opening any windows or doors) of how air will flow through the room when your assigned
window or door is opened. Use pencil so that you can easily make changes to your diagram.

4. Onyour diagram, mark four locations where you would like to test air flow in your room. To test for airflow, hold a
strip of single ply tissue paper between the thumb and index finger. Note the direction that the paper moves when
exposed to the airflow. Then, for each location, predict which way the paper will move if your air flow diagram is
correct.

5. Now, each member of your group will stand in one of the four selected areas. Each member will test the airflow
Agree upon an approximate height at which everyone will hold their papers.

6. When you teacher tells you to, open your assigned window and/or door. Each person should note the direction
that their paper points immediately after the window or door was opened. Record your results on your diagram.

7. Did the airflow test data support or refute the hypothetical model of air flow shown in your diagram? Why or why
not? Correct your model based on your experimental evidence.

8. With your group, discuss how accurate your model is. What limitations did it have? Write down the limitations
that your group agreed upon.

GRASP CHECK
Your diagram is a model, based on experimental evidence, of how air flows through the room. Could you use your model
to predict how air would flow through a new window or door placed in a different location in the classroom? Make a new
diagram that predicts the roon'’s airflow with the addition of a new window or door. Add a short explanation that
describes how.
a. Yes, you could use your model to predict air flow through a new window. The earlier experiment of air flow would
help you model the system more accurately.
b. Yes, you could use your model to predict air flow through a new window. The earlier experiment of air flow is not
useful for modeling the new system.
c. No, you cannot model a system to predict the air flow through a new window. The earlier experiment of air flow
would help you model the system more accurately.
d. No, you cannot model a system to predict the air flow through a new window. The earlier experiment of air flow is
not useful for modeling the new system.

Scientific Laws and Theories

A scientific law is a description of a pattern in nature that is true in all circumstances that have been studied. That is, physical
laws are meant to be universal, meaning that they apply throughout the known universe. Laws are often also concise, whereas
theories are more complicated. A law can be expressed in the form of a single sentence or mathematical equation. For example,
Newton's second law of motion, which relates the motion of an object to the force applied (F), the mass of the object (m), and the
object’s acceleration (a), is simply stated using the equation

F = ma.

Scientific ideas and explanations that are true in many, but not all situations in the universe are usually called principles. An
example is Pascal’s principle, which explains properties of liquids, but not solids or gases. However, the distinction between laws
and principles is sometimes not carefully made in science.

A theory is an explanation for patterns in nature that is supported by much scientific evidence and verified multiple times by
multiple researchers. While many people confuse theories with educated guesses or hypotheses, theories have withstood more
rigorous testing and verification than hypotheses.

As a closing idea about scientific processes, we want to point out that scientific laws and theories, even those that have been
supported by experiments for centuries, can still be changed by new discoveries. This is especially true when new technologies
emerge that allow us to observe things that were formerly unobservable. Imagine how viewing previously invisible objects with a



microscope or viewing Earth for the first time from space may have instantly changed our scientific theories and laws! What

discoveries still await us in the future? The constant retesting and perfecting of our scientific laws and theories allows our

knowledge of nature to progress. For this reason, many scientists are reluctant to say that their studies prove anything. By

saying support instead of prove, it keeps the door open for future discoveries, even if they won't occur for centuries or even

millennia.

Check Your Understanding

6. Explain why scientists sometimes use a model rather than trying to analyze the behavior of the real system.

a.
b.
c.

d.

Models are simpler to analyze.

Models give more accurate results.

Models provide more reliable predictions.
Models do not require any computer calculations.

7. Describe the difference between a question, generated through observation, and a hypothesis.

a.
b.
c.

d.

They are the same.

A hypothesis has been thoroughly tested and found to be true.

A hypothesis is a tentative assumption based on what is already known.
A hypothesis is a broad explanation firmly supported by evidence.

8. What is a scientific model and how is it useful?

a.

A scientific model is a representation of something that can be easily studied directly. It is useful for studying things
that can be easily analyzed by humans.

A scientific model is a representation of something that is often too difficult to study directly. It is useful for studying a
complex system or systems that humans cannot observe directly.

A scientific model is a representation of scientific equipment. It is useful for studying working principles of scientific
equipment.

A scientific model is a representation of a laboratory where experiments are performed. It is useful for studying
requirements needed inside the laboratory.

9. Which of the following statements is correct about the hypothesis?

a.

&N o

The hypothesis must be validated by scientific experiments.
The hypothesis must not include any physical quantity.

The hypothesis must be a short and concise statement.

The hypothesis must apply to all the situations in the universe.

10. What is a scientific theory?

a.

C.

d.

A scientific theory is an explanation of natural phenomena that is supported by evidence.

A scientific theory is an explanation of natural phenomena without the support of evidence.
A scientific theory is an educated guess about the natural phenomena occurring in nature.
A scientific theory is an uneducated guess about natural phenomena occurring in nature.

11. Compare and contrast a hypothesis and a scientific theory.

a.

A hypothesis is an explanation of the natural world with experimental support, while a scientific theory is an educated
guess about a natural phenomenon.

Ahypothesis is an educated guess about natural phenomenon, while a scientific theory is an explanation of natural
world with experimental support.

A hypothesis is experimental evidence of a natural phenomenon, while a scientific theory is an explanation of the
natural world with experimental support.

A hypothesis is an explanation of the natural world with experimental support, while a scientific theory is experimental
evidence of a natural phenomenon.



1.3 The Language of Physics: Physical Quantities and Units

Section Learning Objectives

By the end of this section, you will be able to do the following:
e Associate physical quantities with their International System of Units (Sl)and perform conversions among Sl

units using scientific notation

e Relate measurement uncertainty to significant figures and apply the rules for using significant figures in

calculations

e Correctly create, label, and identify relationships in graphs using mathematical relationships (e.g., slope,
y-intercept, inverse, quadratic and logarithmic)

Section Key Terms

. dependent
accuracy ampere constant conversion factor i
variable
. . . . exponential fundamental physical independent
derived units English units P . . . Pty . B
relationship units variable
inverse inversel . . . . logarithmic (log)
. . y kilogram linear relationship & g
relationship proportional scale
method of adding . .
log-log plot meter order of magnitude precision
percents
quadratic L. . . .
. . scientific notation second semi-log plot SI units
relationship
significant figures slope uncertainty variable y-intercept

The Role of Units

Physicists, like other scientists, make observations and ask basic questions. For example, how big is an object? How much mass
does it have? How far did it travel? To answer these questions, they make measurements with various instruments (e.g., meter
stick, balance, stopwatch, etc.).

The measurements of physical quantities are expressed in terms of units, which are standardized values. For example, the length
of a race, which is a physical quantity, can be expressed in meters (for sprinters) or kilometers (for long distance runners).
Without standardized units, it would be extremely difficult for scientists to express and compare measured values in a
meaningful way (Figure 1.13).

Figure 1.13 Distances given in unknown units are maddeningly useless.

All physical quantities in the International System of Units (SI) are expressed in terms of combinations of seven fundamental



physical units, which are units for: length, mass, time, electric current, temperature, amount of a substance, and luminous
intensity.

Sl Units: Fundamental and Derived Units

There are two major systems of units used in the world: SI units (acronym for the French Le Systeme International d’Unités, also
known as the metric system), and English units (also known as the imperial system). English units were historically used in
nations once ruled by the British Empire. Today, the United States is the only country that still uses English units extensively.
Virtually every other country in the world now uses the metric system, which is the standard system agreed upon by scientists
and mathematicians.

Some physical quantities are more fundamental than others. In physics, there are seven fundamental physical quantities that
are measured in base or physical fundamental units: length, mass, time, electric current temperature, amount of substance, and
luminous intensity. Units for other physical quantities (such as force, speed, and electric charge) described by mathematically
combining these seven base units. In this course, we will mainly use five of these: length, mass, time, electric current and
temperature. The units in which they are measured are the meter, kilogram, second, ampere, kelvin, mole, and candela (Table
1.1). All other units are made by mathematically combining the fundamental units. These are called derived units.

Quantity Name Symbol

Length Meter m

Mass Kilogram | kg

Time Second s
Electric current Ampere a
Temperature Kelvin k
Amount of substance | Mole mol
Luminous intensity Candela | cd

Table 1.1 SI Base Units

The Meter

The SI unit for length is the meter (m). The definition of the meter has changed over time to become more accurate and precise.
The meter was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North Pole. This measurement was
improved in 1889 by redefining the meter to be the distance between two engraved lines on a platinum-iridium bar. (The bar is
now housed at the International Bureau of Weights and Meaures, near Paris). By 1960, some distances could be measured more
precisely by comparing them to wavelengths of light. The meter was redefined as 1,650,763.73 wavelengths of orange light
emitted by krypton atoms. In 1983, the meter was given its present definition as the distance light travels in a vacuum in 1/
299,792,458 of a second (Figure 1.14).

Figure 1.14 The meter is defined to be the distance light travels in 1/299,792,458 of a second through a vacuum. Distance traveled is

speed multiplied by time.



The Kilogram

The SI unit for mass is the kilogram (kg). It is defined to be the mass of a platinum-iridium cylinder, housed at the International
Bureau of Weights and Measures near Paris. Exact replicas of the standard kilogram cylinder are kept in numerous locations
throughout the world, such as the National Institute of Standards and Technology in Gaithersburg, Maryland. The
determination of all other masses can be done by comparing them with one of these standard kilograms.

The Second

The SI unit for time, the second (s) also has a long history. For many years it was defined as 1/86,400 of an average solar day.
However, the average solar day is actually very gradually getting longer due to gradual slowing of Earth’s rotation. Accuracy in
the fundamental units is essential, since all other measurements are derived from them. Therefore, a new standard was adopted
to define the second in terms of a non-varying, or constant, physical phenomenon. One constant phenomenon is the very steady
vibration of Cesium atoms, which can be observed and counted. This vibration forms the basis of the cesium atomic clock. In
1967, the second was redefined as the time required for 9,192,631,770 Cesium atom vibrations (Figure 1.15).

Figure 1.15 An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of one microsecond per year.
The fundamental unit of time, the second, is based on such clocks. This image is looking down from the top of an atomic clock. (Steve

Jurvetson/Flickr)

The Ampere

Electric current is measured in the ampere (A), named after Andre Ampere. You have probably heard of amperes, or amps, when
people discuss electrical currents or electrical devices. Understanding an ampere requires a basic understanding of electricity
and magnetism, something that will be explored in depth in later chapters of this book. Basically, two parallel wires with an
electric current running through them will produce an attractive force on each other. One ampere is defined as the amount of
electric current that will produce an attractive force of 2.7 X 1077 newton per meter of separation between the two wires (the
newton is the derived unit of force).

Kelvins

The SI unit of temperature is the kelvin (or kelvins, but not degrees kelvin). This scale is named after physicist William Thomson,
Lord Kelvin, who was the first to call for an absolute temperature scale. The Kelvin scale is based on absolute zero. This is the
point at which all thermal energy has been removed from all atoms or molecules in a system. This temperature, 0 K, is equal to
-273.15 °C and —459.67 °F. Conveniently, the Kelvin scale actually changes in the same way as the Celsius scale. For example, the
freezing point (0 °C) and boiling points of water (100 °C) are 100 degrees apart on the Celsius scale. These two temperatures are
also 100 kelvins apart (freezing point = 273.15 K; boiling point = 373.15 K).

Metric Prefixes
Physical objects or phenomena may vary widely. For example, the size of objects varies from something very small (like an atom)



to something very large (like a star). Yet the standard metric unit of length is the meter. So, the metric system includes many
prefixes that can be attached to a unit. Each prefix is based on factors of 10 (10, 100, 1,000, etc., as well as 0.1, 0.01, 0.001, etc.).
Table 1.2 gives the metric prefixes and symbols used to denote the different various factors of 10 in the metric system.

Prefix Symbol Value[1] E);lo;r;p:e ESX;npr: E)\(ZIT:‘ZIe Example Description

exa E o8 Exameter Em o m Distance light travels in a
century

peta p 10" Petasecond Ps 10”8 30 million years

tera T 10" Terawatt ™ 10 W Powerful laser output

giga G 107 Gigahertz GHz 10° Hz A microwave frequency

mega | M 10° Megacurie MCi 108 Ci High radioactivity

kilo k 10° Kilometer km 10°m About 6/10 mile

hector | h 10* Hectoliter hL 10°L 26 gallons

deka da 10! Dekagram dag 10'g Teaspoon of butter

N 10° (=1)

deci d 107" Deciliter dL 107'L Less than halfa soda

centi c 1072 Centimeter Cm 107> m Fingertip thickness

milli m 1073 Millimeter Mm 1073 m Flea at its shoulder

micro | u 1076 Micrometer um 10°%m Detail in microscope

nano n 107° Nanogram Ng 107°%¢g Small speck of dust

pico p 107 Picofarad pF 10°2F Small capacitor in radio

femto | f 1075 Femtometer Fm 10 %m Size of a proton

atto . 1018 Attosecond 2 o1 s Time light takes to cross an

atom

Table 1.2 Metric Prefixes for Powers of 10 and Their Symbols

Note—Some examples are approximate.

[1]See Appendix A for a discussion of powers of 10.

The metric system is convenient because conversions between metric units can be done simply by moving the decimal place of a

number. This is because the metric prefixes are sequential powers of 10. There are 100 centimeters in a meter, 1000 meters in a

kilometer, and so on. In nonmetric systems, such as U.S. customary units, the relationships are less simple—there are 12 inches

in a foot, 5,280 feet in a mile, 4 quarts in a gallon, and so on. Another advantage of the metric system is that the same unit can be

used over extremely large ranges of values simply by switching to the most-appropriate metric prefix. For example, distances in

meters are suitable for building construction, but kilometers are used to describe road construction. Therefore, with the metric

system, there is no need to invent new units when measuring very small or very large objects—you just have to move the decimal
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point (and use the appropriate prefix).

Known Ranges of Length, Mass, and Time

Table 1.3 lists known lengths, masses, and time measurements. You can see that scientists use a range of measurement units.

This wide range demonstrates the vastness and complexity of the universe, as well as the breadth of phenomena physicists
study. As you examine this table, note how the metric system allows us to discuss and compare an enormous range of

phenomena, using one system of measurement (Figure 1.16 and Figure 1.17).

Length Mass Phenomenon Time Phenomenon
Phenomenon Measured 1 1
(m) (Kg) Measured (s) Measured
o1 Present experimental limit to 1030 Mass of an electron (9.11 X 1o-%3 Time for light to cross a
smallest observable detail 107 kg) proton
Mean life of an
o . _ Mass of a hydrogen atom 2
1075 Diameter of a proton 10727 (L.67X 107 ke) 10 extremely unstable
: 8 nucleus
. . . Time for one oscillation
10" Diameter of a uranium nucleus 1075 Mass of a bacterium 1075 sl
of avisible light
Time for one vibration
1071 Diameter of a hydrogen atom 107 Mass of a mosquito 1078 ) .
of an atom in a solid
8 Thickness of membranes in cell of . L 8 Time for one oscillation
10 . . 10 Mass of a hummingbird 10 .
living organism of an FM radio wave
Mass of a liter of water Duration of a nerve
1076 Wavelength of visible light 1 1073 .
(about a quart) impulse
1073 Size of a grain of sand 10” Mass of a person 1 Time for one heartbeat
1 Height of a 4-year-old child 10° Mass of a car 10° One day (8.64 X 10*)
10” Length of a football field 108 Mass of a large ship 107 One year (3.16 X 107 s)
About half the life
10* Greatest ocean depth 10" Mass of a large iceberg 10°
expectancy of a human
. Mass of the nucleus of a .
107 Diameter of Earth 10” . 10" Recorded history
come
. Mass of the moon (7.35 X
10" Distance from Earth to the sun 10% 102 ke) ( 107 Age of Earth
Kg
Distance traveled by light in 1 year Mass of Earth (5.97 X 10%4 .
10% i g Y 10% G.57 10% Age of the universe
(alight year) kg)
. . Mass of the Sun (1.99 X 10**
10% Diameter of the Milky Way Galaxy | 10*° (

kg)

Table 1.3 Approximate Values of Length, Mass, and Time [1] More precise values are in parentheses.



Length Phenomenon Measured Mass Phenomenon Time Phenomenon

(m) (Kg) Measured!l] (s) Measured!1]
Lo Distance from Earth to the " Mass of the Milky Way
nearest large galaxy (Andromeda) galaxy (current upper limit)
1026 Distance from Earth to the edges 105 Mass of the known universe
of the known universe (current upper limit)

Table 1.3 Approximate Values of Length, Mass, and Time [1] More precise values are in parentheses.

Figure 1.16 Tiny phytoplankton float among crystals of ice in the Antarctic Sea. They range from a few micrometers to as much as 2

millimeters in length. (Prof. Gordon T. Taylor, Stony Brook University; NOAA Corps Collections)

Figure 1.17 Galaxies collide 2.4 billion light years away from Earth. The tremendous range of observable phenomena in nature challenges

the imagination. (NASA/CXC/UVic./A. Mahdavi et al. Optical/lensing: CFHT/UVic./H. Hoekstra et al.)

Using Scientific Notation with Physical Measurements

Scientific notation is a way of writing numbers that are too large or small to be conveniently written as a decimal. For example,
consider the number 840,000,000,000,000. It’s a rather large number to write out. The scientific notation for this number is
8.40 X 10™. Scientific notation follows this general format

x X 10.

In this format x is the value of the measurement with all placeholder zeros removed. In the example above, xis 8.4. The xis
multiplied by a factor, 107, which indicates the number of placeholder zeros in the measurement. Placeholder zeros are those at
the end of a number that is 10 or greater, and at the beginning of a decimal number that is less than 1. In the example above, the
factor is 10'. This tells you that you should move the decimal point 14 positions to the right, filling in placeholder zeros as you
go. In this case, moving the decimal point 14 places creates only 13 placeholder zeros, indicating that the actual measurement
value is 840,000,000,000,000.



Numbers that are fractions can be indicated by scientific notation as well. Consider the number 0.0000045. Its scientific
notation is 4.5 X 107°. Its scientific notation has the same format

x X 10.

Here, xis 4.5. However, the value of yin the 10” factor is negative, which indicates that the measurement is a fraction of 1.
Therefore, we move the decimal place to the left, for a negative y. In our example of 4.5 X 107, the decimal point would be
moved to the left six times to yield the original number, which would be 0.0000045.

The term order of magnitude refers to the power of 10 when numbers are expressed in scientific notation. Quantities that have
the same power of 10 when expressed in scientific notation, or come close to it, are said to be of the same order of magnitude.
For example, the number 800 can be written as 8 X 10%, and the number 450 can be written as 4.5 X 10%. Both numbers have the
same value for y. Therefore, 800 and 450 are of the same order of magnitude. Similarly, 101 and 99 would be regarded as the
same order of magnitude, 10%. Order of magnitude can be thought of as a ballpark estimate for the scale of a value. The diameter
of an atom is on the order of 107 m, while the diameter of the sun is on the order of 10° m. These two values are 18 orders of
magnitude apart.

Scientists make frequent use of scientific notation because of the vast range of physical measurements possible in the universe,
such as the distance from Earth to the moon (Figure 1.18), or to the nearest star.

Figure 1.18 The distance from Earth to the moon may seem immense, but it is just a tiny fraction of the distance from Earth to our closest
neighboring star. (NASA)

Unit Conversion and Dimensional Analysis

It is often necessary to convert from one type of unit to another. For example, if you are reading a European cookbook in the
United States, some quantities may be expressed in liters and you need to convert them to cups. A Canadian tourist driving
through the United States might want to convert miles to kilometers, to have a sense of how far away his next destination is. A
doctor in the United States might convert a patient’s weight in pounds to kilograms.

Let’s consider a simple example of how to convert units within the metric system. How can we want to convert 1 hour to seconds?

Next, we need to determine a conversion factor relating meters to kilometers. A conversion factor is a ratio expressing how
many of one unit are equal to another unit. A conversion factor is simply a fraction which equals 1. You can multiply any number
by 1 and get the same value. When you multiply a number by a conversion factor, you are simply multiplying it by one. For
example, the following are conversion factors: (1 foot)/(12 inches) = 1 to convert inches to feet, (1 meter)/(100 centimeters) =1to
convert centimeters to meters, (1 minute)/(60 seconds) =1 to convert seconds to minutes. In this case, we know that there are
1,000 meters in 1 kilometer.

Now we can set up our unit conversion. We will write the units that we have and then multiply them by the conversion factor (1
km/1,000m) =1, so we are simply multiplying 8om by 1:

60 i 60
1 J x F 605 005 =36% 107 s 11

LA 1 paid

When there is a unit in the original number, and a unit in the denominator (bottom) of the conversion factor, the units cancel. In

this case, hours and minutes cancel and the value in seconds remains.

You can use this method to convert between any types of unit, including between the U.S. customary system and metric system.
Notice also that, although you can multiply and divide units algebraically, you cannot add or subtract different units. An
expression like 10 km + 5 kg makes no sense. Even adding two lengths in different units, such as 10 km + 20 m does not make
sense. You express both lengths in the same unit. See Appendix C for a more complete list of conversion factors.



@ WORKED EXAMPLE

Unit Conversions: A Short Drive Home

Suppose that you drive the 10.0 km from your university to home in 20.0 min. Calculate your average speed (a) in kilometers per
hour (km/h) and (b) in meters per second (m/s). (Note—Average speed is distance traveled divided by time of travel.)

Strategy

First we calculate the average speed using the given units. Then we can get the average speed into the desired units by picking
the correct conversion factor and multiplying by it. The correct conversion factor is the one that cancels the unwanted unit and
leaves the desired unit in its place.

Solution for (a)
1. Calculate average speed. Average speed is distance traveled divided by time of travel. (Take this definition as a given for
now—average speed and other motion concepts will be covered in a later module.) In equation form,

distance
average speed = ——
time
2. Substitute the given values for distance and time.
10.0 km km
average speed = ———— = 0.500 —
£e 5P 20.0 min min

3. Convert km/min to km/h: multiply by the conversion factor that will cancel minutes and leave hours. That conversion factor

is 60 min/1h . Thus,

k 60 mi k
average speed = 0.500 _m X o0 mm 30.0 “n
min 1h h

Discussion for (a)
To check your answer, consider the following:

1. Be sure that you have properly cancelled the units in the unit conversion. If you have written the unit conversion factor
upside down, the units will not cancel properly in the equation. If you accidentally get the ratio upside down, then the units
will not cancel; rather, they will give you the wrong units as follows

km 1 hr 1 km-h

— X — = — ,
min = 60min 60 min2
which are obviously not the desired units of km/h.

2. Check that the units of the final answer are the desired units. The problem asked us to solve for average speed in units of
km/h and we have indeed obtained these units.

3. Check the significant figures. Because each of the values given in the problem has three significant figures, the answer
should also have three significant figures. The answer 30.0 km/h does indeed have three significant figures, so this is
appropriate. Note that the significant figures in the conversion factor are not relevant because an hour is defined to be 60
min, so the precision of the conversion factor is perfect.

4. Next, check whether the answer is reasonable. Let us consider some information from the problem—if you travel 10 km in a
third of an hour (20 min), you would travel three times that far in an hour. The answer does seem reasonable.

Solution (b)
There are several ways to convert the average speed into meters per second.

1. Start with the answer to (a) and convert km/h to m/s. Two conversion factors are needed—one to convert hours to seconds,
and another to convert kilometers to meters.
2. Multiplying by these yields

km 1h 1,000 m
A =30.0—
veragespeed = 30.0 o X 3.600 s X Tkm




Averagespeed = 8.33?

Discussion for (b)
If we had started with 0.500 km/min, we would have needed different conversion factors, but the answer would have been the
same: 8.33 m/s.

You may have noted that the answers in the worked example just covered were given to three digits. Why? When do you need to
be concerned about the number of digits in something you calculate? Why not write down all the digits your calculator
produces?

@ WORKED EXAMPLE

Using Physics to Evaluate Promotional Materials

A commemorative coin that is 2" in diameter is advertised to be plated with 15 mg of gold. If the density of gold is 19.3 g/cc, and
the amount of gold around the edge of the coin can be ignored, what is the thickness of the gold on the top and bottom faces of
the coin?

Strategy

To solve this problem, the volume of the gold needs to be determined using the gold’s mass and density. Half of that volume is
distributed on each face of the coin, and, for each face, the gold can be represented as a cylinder that is 2" in diameter with a
height equal to the thickness. Use the volume formula for a cylinder to determine the thickness.

Solution
The mass of the gold is given by the formulam = pV = 15X 10~ g, where p = 19.3 g/cc and Vis the volume. Solving for

m _15x107 g

the volume gives V = — = 193 gloc ~78x107™* cc.

1
If tis the thickness, the volume corresponding to half the gold is 5 (7.8 x 107 ) = 71’ t = 1(2.54)t, where the 1" radius
(3.9x107%)

——=19%107 cm = 0.00019 mm.
n(2.54)

has been converted to cm. Solving for the thickness gives t =

Discussion

The amount of gold used is stated to be 15 mg, which is equivalent to a thickness of about 0.00019 mm. The mass figure may
make the amount of gold sound larger, both because the number is much bigger (15 versus 0.00019), and because people may
have a more intuitive feel for how much a millimeter is than for how much a milligram is. A simple analysis of this sort can
clarify the significance of claims made by advertisers.

Accuracy, Precision and Significant Figures

Science is based on experimentation that requires good measurements. The validity of a measurement can be described in terms
of its accuracy and its precision (see Figure 1.19 and Figure 1.20). Accuracy is how close a measurement is to the correct value for
that measurement. For example, let us say that you are measuring the length of standard piece of printer paper. The packaging

in which you purchased the paper states that it is 11 inches long, and suppose this stated value is correct. You measure the length
of the paper three times and obtain the following measurements: 11.1 inches, 11.2 inches, and 10.9 inches. These measurements
are quite accurate because they are very close to the correct value of 11.0 inches. In contrast, if you had obtained a measurement
of 12 inches, your measurement would not be very accurate. This is why measuring instruments are calibrated based on a known
measurement. If the instrument consistently returns the correct value of the known measurement, it is safe for use in finding
unknown values.



Figure 1.19 A double-pan mechanical balance is used to compare different masses. Usually an object with unknown mass is placed in one
pan and objects of known mass are placed in the other pan. When the bar that connects the two pans is horizontal, then the masses in both

pans are equal. The known masses are typically metal cylinders of standard mass such as 1 gram, 10 grams, and 100 grams. (Serge Melki)

Figure 1.20 Whereas a mechanical balance may only read the mass of an object to the nearest tenth of a gram, some digital scales can
measure the mass of an object up to the nearest thousandth of a gram. As in other measuring devices, the precision of a scale is limited to

the last measured figures. This is the hundredths place in the scale pictured here. (Splarka, Wikimedia Commons)

Precision states how well repeated measurements of something generate the same or similar results. Therefore, the precision of
measurements refers to how close together the measurements are when you measure the same thing several times. One way to
analyze the precision of measurements would be to determine the range, or difference between the lowest and the highest
measured values. In the case of the printer paper measurements, the lowest value was 10.9 inches and the highest value was 11.2
inches. Thus, the measured values deviated from each other by, at most, 0.3 inches. These measurements were reasonably
precise because they varied by only a fraction of an inch. However, if the measured values had been 10.9 inches, 11.1 inches, and
11.9 inches, then the measurements would not be very precise because there is a lot of variation from one measurement to
another.

The measurements in the paper example are both accurate and precise, but in some cases, measurements are accurate but not
precise, or they are precise but not accurate. Let us consider a GPS system that is attempting to locate the position of a
restaurant in a city. Think of the restaurant location as existing at the center of a bull’'s-eye target. Then think of each GPS
attempt to locate the restaurant as a black dot on the bull’s eye.

In Figure 1.21, you can see that the GPS measurements are spread far apart from each other, but they are all relatively close to the
actual location of the restaurant at the center of the target. This indicates a low precision, high accuracy measuring system.
However, in Figure 1.22, the GPS measurements are concentrated quite closely to one another, but they are far away from the
target location. This indicates a high precision, low accuracy measuring system. Finally, in Figure 1.23, the GPS is both precise
and accurate, allowing the restaurant to be located.



Figure 1.21 A GPS system attempts to locate a restaurant at the center of the bull’s-eye. The black dots represent each attempt to pinpoint
the location of the restaurant. The dots are spread out quite far apart from one another, indicating low precision, but they are each rather

close to the actual location of the restaurant, indicating high accuracy. (Dark Evil)

Figure 1.22 In this figure, the dots are concentrated close to one another, indicating high precision, but they are rather far away from the

actual location of the restaurant, indicating low accuracy. (Dark Evil)

Figure 1.23 In this figure, the dots are concentrated close to one another, indicating high precision, but they are rather far away from the

actual location of the restaurant, indicating low accuracy. (Dark Evil)

Uncertainty

The accuracy and precision of a measuring system determine the uncertainty of its measurements. Uncertainty is a way to
describe how much your measured value deviates from the actual value that the object has. If your measurements are not very
accurate or precise, then the uncertainty of your values will be very high. In more general terms, uncertainty can be thought of
as a disclaimer for your measured values. For example, if someone asked you to provide the mileage on your car, you might say
that it is 45,000 miles, plus or minus 500 miles. The plus or minus amount is the uncertainty in your value. That is, you are
indicating that the actual mileage of your car might be as low as 44,500 miles or as high as 45,500 miles, or anywhere in
between. All measurements contain some amount of uncertainty. In our example of measuring the length of the paper, we
might say that the length of the paper is 11 inches plus or minus 0.2 inches or 11.0 + 0.2 inches. The uncertainty in a



measurement, 4, is often denoted as 64 ("delta A"),
The factors contributing to uncertainty in a measurement include the following:

1. Limitations of the measuring device

2. The skill of the person making the measurement

3. Irregularities in the object being measured

4. Any other factors that affect the outcome (highly dependent on the situation)

In the printer paper example uncertainty could be caused by: the fact that the smallest division on the ruler is 0.1 inches, the
person using the ruler has bad eyesight, or uncertainty caused by the paper cutting machine (e.g., one side of the paper is
slightly longer than the other.) It is good practice to carefully consider all possible sources of uncertainty in a measurement and
reduce or eliminate them,

Percent Uncertainty
One method of expressing uncertainty is as a percent of the measured value. If a measurement, 4, is expressed with uncertainty,
64, the percent uncertainty is

A
% uncertainty = e X 100%. 1.2

@ WORKED EXAMPLE

Calculating Percent Uncertainty: A Bag of Apples

A grocery store sells 5-1b bags of apples. You purchase four bags over the course of a month and weigh the apples each time. You

obtain the following measurements:
+ Week 1 weight: 4. 8lb
« Week 2 weight: 5.3 1b
« Week 3 weight:4. 91b
« Week 4 weight: 5.4 1b

You determine that the weight of the 5 Ib bag has an uncertainty of +0.4 Ib. What is the percent uncertainty of the bag's weight?
Strategy

First, observe that the expected value of the bag's weight, A, is 5 Ib. The uncertainty in this value, A, is 0.4 Ib. We can use the
following equation to determine the percent uncertainty of the weight

oA
% uncertainty = e X 100%.

Solution
Plug the known values into the equation
04 Ib

ST x 100% = 8%.

% uncertainty =

Discussion

We can conclude that the weight of the apple bag is 5 Ib + 8 percent. Consider how this percent uncertainty would change if the
bag of apples were half as heavy, but the uncertainty in the weight remained the same. Hint for future calculations: when
calculating percent uncertainty, always remember that you must multiply the fraction by 100 percent. If you do not do this, you
will have a decimal quantity, not a percent value.

Uncertainty in Calculations

There is an uncertainty in anything calculated from measured quantities. For example, the area of a floor calculated from
measurements of its length and width has an uncertainty because the both the length and width have uncertainties. How big is
the uncertainty in something you calculate by multiplication or division? If the measurements in the calculation have small
uncertainties (a few percent or less), then the method of adding percents can be used. This method says that the percent
uncertainty in a quantity calculated by multiplication or division is the sum of the percent uncertainties in the items used to
make the calculation. For example, if a floor has a length of 4.00 m and a width of 3.00 m, with uncertainties of 2 percent and 1



percent, respectively, then the area of the floor is 12.0 m?* and has an uncertainty of 3 percent (expressed as an area this is 0.36
m?, which we round to 0.4 m?” since the area of the floor is given to a tenth of a square meter).

For a quick demonstration of the accuracy, precision, and uncertainty of measurements based upon the units of measurement,
try this simulation (http://openstax.org/l/28precision) . You will have the opportunity to measure the length and weight of a

desk, using milli- versus centi- units. Which do you think will provide greater accuracy, precision and uncertainty when
measuring the desk and the notepad in the simulation? Consider how the nature of the hypothesis or research question might
influence how precise of a measuring tool you need to collect data.

Precision of Measuring Tools and Significant Figures

An important factor in the accuracy and precision of measurements is the precision of the measuring tool. In general, a precise
measuring tool is one that can measure values in very small increments. For example, consider measuring the thickness of a
coin. A standard ruler can measure thickness to the nearest millimeter, while a micrometer can measure the thickness to the
nearest 0.005 millimeter. The micrometer is a more precise measuring tool because it can measure extremely small differences
in thickness. The more precise the measuring tool, the more precise and accurate the measurements can be.

When we express measured values, we can only list as many digits as we initially measured with our measuring tool (such as the
rulers shown in Figure 1.24). For example, if you use a standard ruler to measure the length of a stick, you may measure it with a
decimeter ruler as 3.6 cm. You could not express this value as 3.65 cm because your measuring tool was not precise enough to
measure a hundredth of a centimeter. It should be noted that the last digit in a measured value has been estimated in some way
by the person performing the measurement. For example, the person measuring the length of a stick with a ruler notices that
the stick length seems to be somewhere in between 36 mm and 37 mm. He or she must estimate the value of the last digit. The
rule is that the last digit written down in a measurement is the first digit with some uncertainty. For example, the last measured
value 36.5 mm has three digits, or three significant figures. The number of significant figures in a measurement indicates the
precision of the measuring tool. The more precise a measuring tool is, the greater the number of significant figures it can
report.

Figure 1.24 Three metric rulers are shown. The first ruler is in decimeters and can measure point three decimeters. The second ruler is in
centimeters long and can measure three point six centimeters. The last ruler is in millimeters and can measure thirty-six point five

millimeters.

Zeros

Special consideration is given to zeros when counting significant figures. For example, the zeros in 0.053 are not significant
because they are only placeholders that locate the decimal point. There are two significant figures in 0.053—the 5 and the 3.
However, if the zero occurs between other significant figures, the zeros are significant. For example, both zeros in 10.053 are
significant, as these zeros were actually measured. Therefore, the 10.053 placeholder has five significant figures. The zeros in
1300 may or may not be significant, depending on the style of writing numbers. They could mean the number is known to the
last zero, or the zeros could be placeholders. So 1300 could have two, three, or four significant figures. To avoid this ambiguity,


http://openstax.org/l/28precision

write 1300 in scientific notation as 1.3 x 10°. Only significant figures are given in the x factor for a number in scientific notation
(in the form x X 10”). Therefore, we know that 1and 3 are the only significant digits in this number. In summary, zeros are
significant except when they serve only as placeholders. Table 1.4 provides examples of the number of significant figures in
various numbers.

Significant .
Number g' Rationale
Figures
1.657 4 There are no zeros and all non-zero numbers are always significant.
0.4578 4 The first zero is only a placeholder for the decimal point.
The first four zeros are placeholders needed to report the data to the ten-thoudsandths
0.000458 | 3
place.
2000.56 6 The three zeros are significant here because they occur between other significant figures.
With no underlines or scientific notation, we assume that the last two zeros are
45,600 3 ..
placeholders and are not significant.
15895000 | 7 The two underlined zeros are significant, while the last zero is not, as it is not underlined.
5.457 X In scientific notation, all numbers reported in front of the multiplication sign are
4 Lo
10”2 significant
6.520 X In scientific notation, all numbers reported in front of the multiplication sign are
- 4 .. . .
1073 significant, including zeros.
Table 1.4

Significant Figures in Calculations

When combining measurements with different degrees of accuracy and precision, the number of significant digits in the final
answer can be no greater than the number of significant digits in the least precise measured value. There are two different rules,
one for multiplication and division and another rule for addition and subtraction, as discussed below.

1. For multiplication and division: The answer should have the same number of significant figures as the starting value with
the fewest significant figures. For example, the area of a circle can be calculated from its radius using A = 772 . Let us see
how many significant figures the area will have if the radius has only two significant figures, for example, r=2.0 m. Then,
using a calculator that keeps eight significant figures, you would get

A=’ = (3.1415927..) x (2.0 m)* = 4.5238934 m°.

But because the radius has only two significant figures, the area calculated is meaningful only to two significant figures or

A= 45m?

even though the value of 77 is meaningful to at least eight digits.

2. Foraddition and subtraction: The answer should have the same number places (e.g. tens place, ones place, tenths place,
etc.) as the least-precise starting value. Suppose that you buy 7.56 kg of potatoes in a grocery store as measured with a scale
having a precision of 0.01 kg. Then you drop off 6.052 kg of potatoes at your laboratory as measured by a scale with a
precision of 0.001 kg. Finally, you go home and add 13.7 kg of potatoes as measured by a bathroom scale with a precision of
0.1 kg. How many kilograms of potatoes do you now have, and how many significant figures are appropriate in the answer?
The mass is found by simple addition and subtraction:



7.56 kg
—6.052 kg
+13.7 kg

15208 kg

The least precise measurement is 13.7 kg. This measurement is expressed to the 0.1 decimal place, so our final answer must
also be expressed to the 0.1 decimal place. Thus, the answer should be rounded to the tenths place, giving 15.2 kg. The same
is true for non-decimal numbers. For example,

6527.23 +2 = 6528.23 = 6528 .

We cannot report the decimal places in the answer because 2 has no decimal places that would be significant. Therefore, we
can only report to the ones place.

Itis a good idea to keep extra significant figures while calculating, and to round off to the correct number of significant
figures only in the final answers. The reason is that small errors from rounding while calculating can sometimes produce
significant errors in the final answer. As an example, try calculating 5,098 — (5.000) X (1,010) to obtain a final answer
to only two significant figures. Keeping all significant during the calculation gives 48. Rounding to two significant figures
in the middle of the calculation changes it to 5,100 — (5.000) X (1,000) = 100, which is way off. You would similarly
avoid rounding in the middle of the calculation in counting and in doing accounting, where many small numbers need to
be added and subtracted accurately to give possibly much larger final numbers.

Significant Figures in this Text

In this textbook, most numbers are assumed to have three significant figures. Furthermore, consistent numbers of significant
figures are used in all worked examples. You will note that an answer given to three digits is based on input good to at least three
digits. If the input has fewer significant figures, the answer will also have fewer significant figures. Care is also taken that the
number of significant figures is reasonable for the situation posed. In some topics, such as optics, more than three significant
figures will be used. Finally, if a number is exact, such as the 2 in the formula, ¢ = 277, it does not affect the number of
significant figures in a calculation.

@ WORKED EXAMPLE

Approximating Vast Numbers: a Trillion Dollars
The U.S. federal deficit in the 2008 fiscal year was a little greater than $10 trillion. Most of us do not have any concept of how

much even one trillion actually is. Suppose that you were given a trillion dollars in $100 bills. If you made 100-bill stacks, like
that shown in Figure 1.25, and used them to evenly cover a football field (between the end zones), make an approximation of how
high the money pile would become. (We will use feet/inches rather than meters here because football fields are measured in
yards.) One of your friends says 3 in., while another says 10 ft. What do you think?



Figure 1.25 A bank stack contains one hundred $100 bills, and is worth $10,000. How many bank stacks make up a trillion dollars?
(Andrew Magill)

Strategy

When you imagine the situation, you probably envision thousands of small stacks of 100 wrapped $100 bills, such as you might
see in movies or at a bank. Since this is an easy-to-approximate quantity, let us start there. We can find the volume of a stack of
100 bills, find out how many stacks make up one trillion dollars, and then set this volume equal to the area of the football field
multiplied by the unknown height.

Solution
1. Calculate the volume of a stack of 100 bills. The dimensions of a single bill are approximately 3 in. by 6 in. A stack of 100 of
these is about 0.5 in. thick. So the total volume of a stack of 100 bills is
volume of stack = length X width X height,

volume of stack = 6 in. X 3 in. X 0.5 in.,
volume of stack = 9 in.3.

2. Calculate the number of stacks. Note that a trillion dollars is equal to $1 X 10'? , and a stack of one-hundred $100 bills is
equal to $10, 000, or $1 X 10* . The number of stacks you will have is

$1 % 10" (a trillion dollars) / $1 x 10* per stack = 1 X 10® stacks. 1.3

3. Calculate the area of a football field in square inches. The area of a football field is 100 yd X 50yd, which gives
5,000 yd? . Because we are working in inches, we need to convert square yards to square inches

— 2 3ft  3ft o 12in 12in. _ )
Area = 5,000 yd*© x Tyd X Tyd X T X Thoor = 6,480,000 in.-,

Area ~ 6 x 10° in.2.

This conversion gives us 6 X 10° in.2 for the area of the field. (Note that we are using only one significant figure in these
calculations.)

4. Calculate the total volume of the bills. The volume of all the $100-bill stacks is
9in.% / stack x 10® stacks = 9 x 10® in.?
5. Calculate the height. To determine the height of the bills, use the following equation



volume of bills

area of field X height of money

: _ lume of bill

Height of money = e P Feld

Height of money = % =1.33 x 10* in.
Height of money = 1x10? in. = 100 in.

The height of the money will be about 100 in. high. Converting this value to feet gives

=8.33 ft~ 8ft.

1ft
100 in. X
RO

Discussion

The final approximate value is much higher than the early estimate of 3 in., but the other early estimate of 10 ft (120 in.) was
roughly correct. How did the approximation measure up to your first guess? What can this exercise tell you in terms of rough
guesstimates versus carefully calculated approximations?

In the example above, the final approximate value is much higher than the first friend’s early estimate of 3 in. However, the other
friend’s early estimate of 10 ft. (120 in.) was roughly correct. How did the approximation measure up to your first guess? What
can this exercise suggest about the value of rough guesstimatesversus carefully calculated approximations?

Graphing in Physics

Most results in science are presented in scientific journal articles using graphs. Graphs present data in a way that is easy to
visualize for humans in general, especially someone unfamiliar with what is being studied. They are also useful for presenting
large amounts of data or data with complicated trends in an easily-readable way.

One commonly-used graph in physics and other sciences is the line graph, probably because it is the best graph for showing how
one quantity changes in response to the other. Let’s build a line graph based on the data in Table 1.5, which shows the measured
distance that a train travels from its station versus time. Our two variables, or things that change along the graph, are time in
minutes, and distance from the station, in kilometers. Remember that measured data may not have perfect accuracy.

Time (min) Distance from Station (km)

o) o)
10 24
20 36
30 60
40 84
50 97
60 116
70 140
Table 1.5

1. Draw the two axes. The horizontal axis, or x-axis, shows the independent variable, which is the variable that is controlled
or manipulated. The vertical axis, or y-axis, shows the dependent variable, the non-manipulated variable that changes
with (or is dependent on) the value of the independent variable. In the data above, time is the independent variable and
should be plotted on the x-axis. Distance from the station is the dependent variable and should be plotted on the y-axis.



2.

Label each axes on the graph with the name of each variable, followed by the symbol for its units in parentheses. Be sure to
leave room so that you can number each axis. In this example, use Time (min) as the label for the x-axis.

Next, you must determine the best scale to use for numbering each axis. Because the time values on the x-axis are taken
every 10 minutes, we could easily number the x-axis from o to 70 minutes with a tick mark every 10 minutes. Likewise, the
y-axis scale should start low enough and continue high enough to include all of the distance from station values. A scale
from o km to 160 km should suffice, perhaps with a tick mark every 10 km.

In general, you want to pick a scale for both axes that 1) shows all of your data, and 2) makes it easy to identify trends in
your data. If you make your scale too large, it will be harder to see how your data change. Likewise, the smaller and more
fine you make your scale, the more space you will need to make the graph. The number of significant figures in the axis
values should be coarser than the number of significant figures in the measurements.

Now that your axes are ready, you can begin plotting your data. For the first data point, count along the x-axis until you find
the 10 min tick mark. Then, count up from that point to the 10 km tick mark on the y-axis, and approximate where 22 km is
along the y-axis. Place a dot at this location. Repeat for the other six data points (Figure 1.26).

Figure 1.26 The graph of the train’s distance from the station versus time from the exercise above.

Add artitle to the top of the graph to state what the graph is describing, such as the y-axis parameter vs. the x-axis
parameter. In the graph shown here, the title is train motion. It could also be titled distance of the train from the station vs.
time.

Finally, with data points now on the graph, you should draw a trend line (Figure 1.27). The trend line represents the
dependence you think the graph represents, so that the person who looks at your graph can see how close it is to the real
data. In the present case, since the data points look like they ought to fall on a straight line, you would draw a straight line
as the trend line. Draw it to come closest to all the points. Real data may have some inaccuracies, and the plotted points
may not all fall on the trend line. In some cases, none of the data points fall exactly on the trend line.



Figure 1.27 The completed graph with the trend line included.

Analyzing a Graph Using Its Equation
One way to get a quick snapshot of a dataset is to look at the equation of its trend line. If the graph produces a straight line, the
equation of the trend line takes the form

y=mx+b.

The bin the equation is the y-intercept while the m in the equation is the slope. The y-intercept tells you at what yvalue the line
intersects the y-axis. In the case of the graph above, the y-intercept occurs at o, at the very beginning of the graph. The
y-intercept, therefore, lets you know immediately where on the y-axis the plot line begins.

The m in the equation is the slope. This value describes how much the line on the graph moves up or down on the y-axis along
the line’s length. The slope is found using the following equation

-1
m=———.
X, - X,

In order to solve this equation, you need to pick two points on the line (preferably far apart on the line so the slope you calculate
describes the line accurately). The quantities Y, and Y; represent the y-values from the two points on the line (not data points)
that you picked, while X, and X; represent the two x-values of the those points.

What can the slope value tell you about the graph? The slope of a perfectly horizontal line will equal zero, while the slope of a
perfectly vertical line will be undefined because you cannot divide by zero. A positive slope indicates that the line moves up the
y-axis as the x-value increases while a negative slope means that the line moves down the y-axis. The more negative or positive
the slope is, the steeper the line moves up or down, respectively. The slope of our graph in Figure 1.26 is calculated below based
on the two endpoints of the line

Y,-Y;
X2 —X]

(80 km) — (20 km)
(40 min) — (10 min)
60 km
30 min

m = 2.0 km/min.

Equation of line: y = (2.0 km/min) x + 0

Because the x axis is time in minutes, we would actually be more likely to use the time t as the independent (x-axis) variable and
write the equation as



y = (2.0 km/min) ¢t + 0. 1.4

The formula y = mx + b only applies to linear relationships, or ones that produce a straight line. Another common type of line
in physics is the quadratic relationship, which occurs when one of the variables is squared. One quadratic relationship in
physics is the relation between the speed of an object its centripetal acceleration, which is used to determine the force needed to
keep an object moving in a circle. Another common relationship in physics is the inverse relationship, in which one variable
decreases whenever the other variable increases. An example in physics is Coulomb's law. As the distance between two charged
objects increases, the electrical force between the two charged objects decreases. Inverse proportionality, such the relation
between x and yin the equation

y = kix,

for some number k, is one particular kind of inverse relationship. A third commonly-seen relationship is the exponential
relationship, in which a change in the independent variable produces a proportional change in the dependent variable. As the
value of the dependent variable gets larger, its rate of growth also increases. For example, bacteria often reproduce at an
exponential rate when grown under ideal conditions. As each generation passes, there are more and more bacteria to reproduce.
As aresult, the growth rate of the bacterial population increases every generation (Figure 1.28).

Figure 1.28 Examples of (a) linear, (b) quadratic, (c) inverse, and (d) exponential relationship graphs.

Using Logarithmic Scales in Graphing
Sometimes a variable can have a very large range of values. This presents a problem when you're trying to figure out the best
scale to use for your graph’s axes. One option is to use a logarithmic (log) scale. In a logarithmic scale, the value each mark labels



is the previous mark’s value multiplied by some constant. For a log base 10 scale, each mark labels a value that is 10 times the
value of the mark before it. Therefore, a base 10 logarithmic scale would be numbered: 0, 10, 100, 1,000, etc. You can see how the
logarithmic scale covers a much larger range of values than the corresponding linear scale, in which the marks would label the
values 0, 10, 20, 30, and so on.

If you use a logarithmic scale on one axis of the graph and a linear scale on the other axis, you are using a semi-log plot. The
Richter scale, which measures the strength of earthquakes, uses a semi-log plot. The degree of ground movement is plotted on a
logarithmic scale against the assigned intensity level of the earthquake, which ranges linearly from 1-10 (Figure 1.29 (a)).

If a graph has both axes in a logarithmic scale, then it is referred to as a log-log plot. The relationship between the wavelength
and frequency of electromagnetic radiation such as light is usually shown as a log-log plot (Figure 1.29 (b)). Log-log plots are also
commonly used to describe exponential functions, such as radioactive decay.

Figure 1.29 (a) The Richter scale uses a log base 10 scale on its y-axis (microns of amplified maximum ground motion). (b) The relationship

between the frequency and wavelength of electromagnetic radiation can be plotted as a straight line if a log-log plot is used.

Virtual Physics
Graphing Lines

In this simulation you will examine how changing the slope and y-intercept of an equation changes the appearance of a
plotted line. Select slope-intercept form and drag the blue circles along the line to change the line’s characteristics. Then,
play the line game and see if you can determine the slope or y-intercept of a given line.

Click to view content (https://phet.colorado.edu/sims/html/graphing-lines/latest/graphing-lines_en.html)

GRASP CHECK
How would the following changes affect a line that is neither horizontal nor vertical and has a positive slope?
1. increase the slope but keeping the y-intercept constant

2. increase the y-intercept but keeping the slope constant
a. Increasing the slope will cause the line to rotate clockwise around the y-intercept. Increasing the y-intercept will
cause the line to move vertically up on the graph without changing the line’s slope.
b. Increasing the slope will cause the line to rotate counter-clockwise around the y-intercept. Increasing the
y-intercept will cause the line to move vertically up on the graph without changing the line’s slope.
c. Increasing the slope will cause the line to rotate clockwise around the y-intercept. Increasing the y-intercept will
cause the line to move horizontally right on the graph without changing the line’s slope.



https://phet.colorado.edu/sims/html/graphing-lines/latest/graphing-lines_en.html

d. Increasing the slope will cause the line to rotate counter-clockwise around the y-intercept. Increasing the
y-intercept will cause the line to move horizontally right on the graph without changing the line's slope.

Check Your Understanding

12. Identify some advantages of metric units.
a. Conversion between units is easier in metric units.
b. Comparison of physical quantities is easy in metric units.
c. Metric units are more modern than English units.
d. Metric units are based on powers of 2.

13. The length of an American football field is 100 yd, excluding the end zones. How long is the field in meters? Round to the
nearest 0.1 m.

a. 10.2m
b. 91.4m
c. 109.4m
d. 328.1m

14. The speed limit on some interstate highways is roughly 100 km/h. How many miles per hour is this if 1.0 mile is about
1.609 km?
a. o.1mi/h
b. 27.8mi/h
c. 62mi/h
d. 160 mi/h

15. Briefly describe the target patterns for accuracy and precision and explain the differences between the two.

a. Precision states how much repeated measurements generate the same or closely similar results, while accuracy states
how close a measurement is to the true value of the measurement.

b. Precision states how close a measurement is to the true value of the measurement, while accuracy states how much
repeated measurements generate the same or closely similar result.

c. Precision and accuracy are the same thing. They state how much repeated measurements generate the same or closely
similar results.

d. Precision and accuracy are the same thing. They state how close a measurement is to the true value of the
measurement.



