

Acceleration

Acceleration is the rate at which an object's velocity is changing. It doesn't just mean speeding up. Slowing down and changing direction are forms of acceleration, too.

Formula for acceleration

You can calculate acceleration using the formula below. The unit to use for acceleration is m/s^2 (meters per second squared).

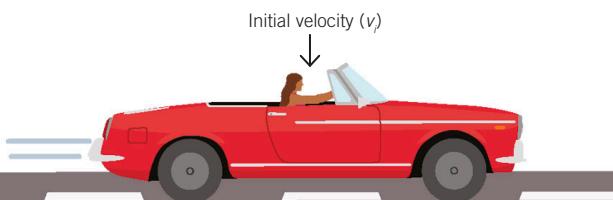
$$\text{acceleration } (\text{m/s}^2) = \frac{\text{change in velocity } (\text{m/s})}{\text{time taken } (\text{s})}$$

$$a = \frac{v_f - v_i}{t}$$

Final velocity v_f Initial velocity v_i

Calculating acceleration

To work out "change in velocity" in the right side of the formula, you need two figures: final velocity and initial velocity. Take care to get these the right way around. For example, a car traveling at a velocity of 13 m/s speeds up to 25 m/s in 10 seconds. What's its acceleration?

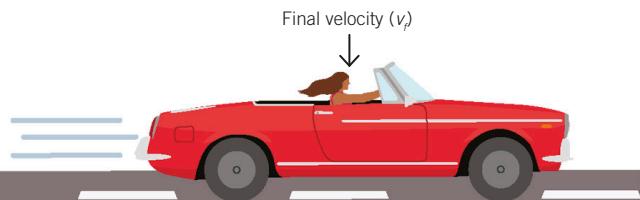
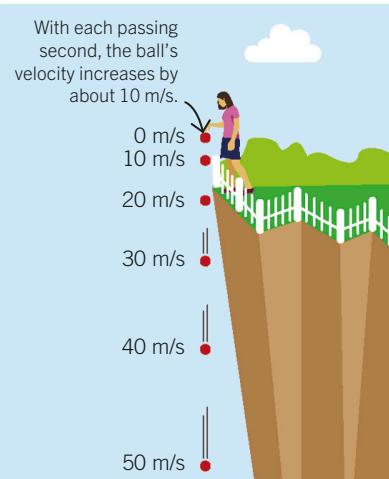

$$a = \frac{v_f - v_i}{t}$$

$$= \frac{25 \text{ m/s} - 13 \text{ m/s}}{10 \text{ s}}$$

$$= 1.2 \text{ m/s}^2$$

Put final velocity first and initial velocity second.

Acceleration is measured in meters per second squared (meters per second per second).

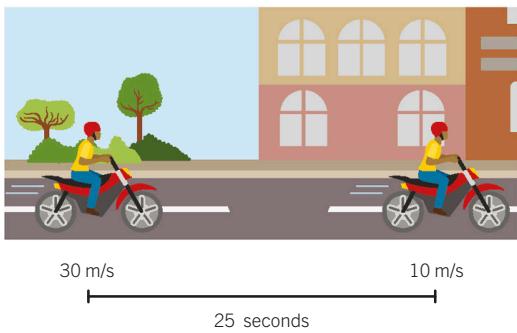
Key facts

- ✓ Acceleration is the rate at which velocity changes.
- ✓ The unit for acceleration is m/s^2 .
- ✓ The uniform acceleration of a falling object at Earth's surface is 9.8 m/s^2 (g).

Acceleration due to gravity

When an object falls, the force of gravity at Earth's surface gives it a uniform acceleration of about 9.8 m/s^2 . This means that with each passing second, its velocity increases by 9.8 m/s . This value is used so often in calculations that it has its own abbreviation, g . In real life, objects don't always accelerate uniformly at 9.8 m/s^2 because air resistance produces an upward force.

Drogue parachute


Some high-speed aircraft must slow down (decelerate) very quickly in order to land in confined spaces. One solution is to deploy a drogue parachute—a small parachute that dramatically increases the force of drag.

Slowing down

Question

If an object is slowing down, it has negative acceleration. A motorcycle is traveling at 30 m/s on a country road. It arrives at a town and the rider slows down to 10 m/s, taking 25 seconds to do so. What was the average acceleration?

Answer

$$a = \frac{V_f - V_i}{t}$$

$$= \frac{10 \text{ m/s} - 30 \text{ m/s}}{25 \text{ s}}$$

$$= \underline{-0.8 \text{ m/s}^2}$$

- Acceleration is negative here because the motorcycle was slowing down.

Using distance

Sometimes we have to calculate acceleration from a change in velocity over a certain distance rather than over a period of time. We use the equation below to do this.

$$v_f^2 - v_i^2 = 2as$$

Final velocity Initial velocity

Displacement (distance traveled)

Finding acceleration

Question

A train pulls out from a station and accelerates uniformly for 1350 m until it reaches a velocity of 55 m/s. What is the train's acceleration?

Answer

Rearrange the formula to find a .

$$a = \frac{v_f^2 - v_i^2}{2s}$$

$$= \frac{(55 \text{ m/s})^2 - (0 \text{ m/s})^2}{2 \times 1350 \text{ m}}$$

$$= \frac{3025}{2700}$$

$$= 1.12 \text{ m/s}^2$$